Large language models (LLMs) excel at various tasks due to their vast training datasets, but their knowledge can be static and lack domain-specific nuance. Researchers have explored methods like fine-tuning and retrieval-augmented generation (RAG) to address these limitations. Fine-tuning involves adjusting a pre-trained model on a narrower dataset to enhance its performance in a specific domain. RAG, on the other hand, expands LLMs' capabilities, especially in knowledge-intensive tasks,...
Finetuning vs RAG | AI Blindspot podcast - Listen or read transcript on Metacast