In this episode today’s guest is Celine Wüst, a master’s student at ETH Zurich specializing in secure and reliable systems, shares her work on automated software testing for graph databases. Celine shows how fuzzing—the process of automatically generating complex queries—helps uncover hidden bugs in graph database management systems like Neo4j, FalconDB, and Apache AGE. Key insights include how state-aware query generation can detect critical issues like buffer overflows and crashes, the challen...
Mar 10, 2025•29 min•Transcript available on Metacast In this episode, Gabriel Petrescu, an organizational network analyst, discusses how network science can provide deep insights into organizational structures using OrgXO, a tool that maps companies as networks rather than rigid hierarchies. Listeners will learn how analyzing workplace collaboration networks can reveal hidden influencers, organizational bottlenecks, and engagement levels, offering a data-driven approach to improving effectiveness and resilience. Key insights include how companies ...
Mar 03, 2025•44 min•Transcript available on Metacast Is it better to have your work team fully connected or sparsely connected? In this episode we'll try to answer this question and more with our guest Hiroki Sayama, a SUNY Distinguished Professor and director of the Center for Complex Systems at Binghamton University. Hiroki delves into the applications of network science in organizational structures and innovation dynamics by showing his recent work of extracting network structures from organizational charts to enable insights into decision-maki...
Feb 25, 2025•28 min•Transcript available on Metacast A man goes into a bar… This is the beginning of a riddle that our guest, Yoed Kennet, an assistant professor at the Technion's Faculty of Data and Decision Sciences, uses to measure creativity in subjects. In our talk, Yoed speaks about how to combine cognitive science and network science to explore the complexities and decode the mysteries of the human mind. The listeners will learn how network science provides tools to map and analyze human memory, revealing how problem-solving and creativity ...
Feb 18, 2025•43 min•Transcript available on Metacast In this episode, Garima Agrawal, a senior researcher and AI consultant, brings her years of experience in data science and artificial intelligence. Listeners will learn about the evolving role of knowledge graphs in augmenting large language models (LLMs) for domain-specific tasks and how these tools can mitigate issues like hallucination in AI systems. Key insights include how LLMs can leverage knowledge graphs to improve accuracy by integrating domain expertise, reducing hallucinations, and en...
Feb 10, 2025•35 min•Transcript available on Metacast In this episode, Bnaya Gross, a Fulbright postdoctoral fellow at the Center for Complex Network Research at Northwestern University, explores the transformative applications of network science in fields ranging from infrastructure to medicine, by studying the interactions between networks ("a network of networks"). Listeners will learn how interdependent networks provide a framework for understanding cascading failures, such as power outages, and how these insights transfer to physical systems l...
Feb 04, 2025•46 min•Transcript available on Metacast Our guests, Erwan Le Merrer and Gilles Tredan, are long-time collaborators in graph theory and distributed systems. They share their expertise on applying graph-based approaches to understanding both large language model (LLM) hallucinations and shadow banning on social media platforms. In this episode, listeners will learn how graph structures and metrics can reveal patterns in algorithmic behavior and platform moderation practices. Key insights include the use of graph theory to evaluate LLM o...
Jan 29, 2025•40 min•Transcript available on Metacast In this episode, Šimon Mandlík, a PhD candidate at the Czech Technical University will talk with us about leveraging machine learning and graph-based techniques for cybersecurity applications. We'll learn how graphs are used to detect malicious activity in networks, such as identifying harmful domains and executable files by analyzing their relationships within vast datasets. This will include the use of hierarchical multi-instance learning (HML) to represent JSON-based network activity as graph...
Jan 22, 2025•37 min•Transcript available on Metacast Thibaut Vidal, a professor at Polytechnique Montreal, specializes in leveraging advanced algorithms and machine learning to optimize supply chain operations. In this episode, listeners will learn how graph-based approaches can transform supply chains by enabling more efficient routing, districting, and decision-making in complex logistical networks. Key insights include the application of Graph Neural Networks to predict delivery costs, with potential to improve districting strategies for compan...
Jan 15, 2025•38 min•Transcript available on Metacast Our guest in this episode is David Tench, a Grace Hopper postdoctoral fellow at Lawrence Berkeley National Labs, who specializes in scalable graph algorithms and compression techniques to tackle massive datasets. In this episode, we will learn how his techniques enable real-time analysis of large datasets, such as particle tracking in physics experiments or social network analysis, by reducing storage requirements while preserving critical structural properties. David also challenges the common ...
Jan 10, 2025•48 min•Transcript available on Metacast In this episode, Dave Bechberger, principal Graph Architect at AWS and author of "Graph Databases in Action", brings deep insights into the field of graph databases and their applications. Together we delve into specific scenarios in which Graph Databases provide unique solutions, such as in the fraud industry, and learn how to optimize our DB for questions around connections, such as "How are these entities related?" or "What patterns of interaction indicate anomalies?" This discussion sheds li...
Dec 16, 2024•38 min•Transcript available on Metacast In this episode, Adam Machowczyk, a PhD student at the University of Leicester, specializes in graph rewriting and its intersection with machine learning, particularly Graph Neural Networks. Adam explains how graph rewriting provides a formalized method to modify graphs using rule-based transformations, allowing for tasks like graph completion, attribute prediction, and structural evolution. Bridging the worlds of graph rewriting and machine learning, Adam's work aspire to open new possibilities...
Dec 09, 2024•33 min•Transcript available on Metacast In this episode, the data scientist Wentao Su shares his experience in AB testing on social media platforms like LinkedIn and TikTok. We talk about how network science can enhance AB testing by accounting for complex social interactions, especially in environments where users are both viewers and content creators. These interactions might cause a "spillover effect" meaning a possible influence across experimental groups, which can distort results. To mitigate this effect, our guest presents heur...
Nov 25, 2024•37 min•Transcript available on Metacast Alex Bisberg, a PhD candidate at the University of Southern California, specializes in network science and game analytics, with a focus on understanding social and competitive success in multiplayer online games. In this episode, listeners can expect to learn from a network perspective about players interactions and patterns of behavior. Through his research on games, Alex sheds light on how network analysis and statistical tests might explain positive contagious behaviors, such as generosity, a...
Nov 18, 2024•38 min•Transcript available on Metacast In this episode we discuss the GitHub Collaboration Network with Behnaz Moradi-Jamei, assistant professor at James Madison University. As a network scientist, Behnaz created and analyzed a network of about 700,000 contributors to Github's repository. The network of collaborators on GitHub was created by identifying developers (nodes) and linking them with edges based on shared contributions to the same repositories. This means that if two developers contributed to the same project, an edge (conn...
Nov 11, 2024•42 min•Transcript available on Metacast We are joined by Abhishek Paudel, a PhD Student at George Mason University with a research focus on robotics, machine learning, and planning under uncertainty, using graph-based methods to enhance robot behavior. He explains how graph-based approaches can model environments, capture spatial relationships, and provide a framework for integrating multiple levels of planning and decision-making.
Nov 04, 2024•42 min•Transcript available on Metacast We are joined by Maciej Besta, a senior researcher of sparse graph computations and large language models at the Scalable Parallel Computing Lab (SPCL). In this episode, we explore the intersection of graph theory and high-performance computing (HPC), Graph Neural Networks (GNNs) and LLMs.
Oct 29, 2024•52 min•Transcript available on Metacast In this episode, we sit down with Yuanyuan Tian, a principal scientist manager at Microsoft Gray Systems Lab, to discuss the evolving role of graph databases in various industries such as fraud detection in finance and insurance, security, healthcare, and supply chain optimization.
Oct 21, 2024•36 min•Transcript available on Metacast Our new season "Graphs and Networks" begins here! We are joined by new co-host Asaf Shapira, a network analysis consultant and the podcaster of NETfrix – the network science podcast. Kyle and Asaf discuss ideas to cover in the season and explore Asaf's work in the field.
Oct 14, 2024•30 min•Transcript available on Metacast Join us for our capstone episode on the Animal Intelligence season. We recap what we loved, what we learned, and things we wish we had gotten to spend more time on. This is a great episode to see how the podcast is produced. Now that the season is ending, our current co-host, Becky, is moving to emeritus status. In this last installment we got to spend a little more time getting to know Becky and where her work will take her after this. Did Data Skeptic inspire her to learn more about machine le...
Oct 07, 2024•30 min•Transcript available on Metacast David Obembe, a recent University of Tartu graduate, discussed his Masters thesis on integrating LLMs with process mining tools. He explained how process mining uses event logs to create maps that identify inefficiencies in business processes. David shared his research on LLMs' potential to enhance process mining, including experiments evaluating their performance and future improvements using Retrieval Augmented Generation (RAG).
Sep 24, 2024•26 min•Transcript available on Metacast Our guest today is Risa Shinoda, a PhD student at Kyoto University Agricultural Systems Engineering Lab, where she applies computer vision techniques. She talked about the OpenAnimalTracks dataset and what it was used for. The dataset helps researchers predict animal footprint. She also discussed how she built a model for predicting tracks of animals. She shared the algorithms used and the accuracy they achieved. She also discussed further improvement opportunities for the model.
Sep 17, 2024•23 min•Transcript available on Metacast This episode features an interview with Mélisande Teng, a PhD candidate at Université de Montréal. Her research lies in the intersection of remote sensing and computer vision for biodiversity monitoring.
Sep 10, 2024•40 min•Transcript available on Metacast In this interview with author Deborah Gordon, Kyle asks questions about the mechanisms at work in an ant colony and what ants might teach us about how to build artificial intelligence. Ants are surprisingly adaptive creatures whose behavior emerges from their complex interactions. Aspects of network theory and the statistical nature of ant behavior are just some of the interesting details you'll get in this episode....
Aug 26, 2024•31 min•Transcript available on Metacast This season it’s become clear that computing skills are vital for working in the natural sciences. In this episode, we were fortunate to speak with Madlen Wilmes, co-author of the book "Computing Skills for Biologists: A Toolbox". We discussed the book and why it’s a great resource for students and teachers. In addition to the book, Madlen shared her experience and advice on transitioning from academia to an industry career and how data analytic skills transfer to jobs that your professionals mi...
Aug 19, 2024•39 min•Transcript available on Metacast In this episode, we talked shop with Hager Radi about her biodiversity monitoring work. While biodiversity modeling may sound simple, count organisms and mark their location, there is a lot more to it than that! Incomplete and biased data can make estimations hard. There are also many species with very few observations in the wild. Using machine learning and remote sensing data, scientists can build models that predict species distributions with limited data. Listen in and hear about Hager’s wor...
Aug 14, 2024•32 min•Transcript available on Metacast Today, Ashay Aswale and Tony Lopez shared their work on swarm robotics and what they have learned from ants. Robotic swarms must solve the same problems that eusocial insects do. What if your pheromone trail goes cold? What if you’re getting bad information from a bad-actor within the swarm? Answering these questions can help tackle serious robotic challenges. For example, a swarm of robots can lose a few members to accidents and malfunctions, but a large robot cannot. Additionally, a swarm coul...
Aug 08, 2024•41 min•Transcript available on Metacast During this season we have talked with researchers working to utilize machine learning for behavioral observations. In previous episodes, you have heard about the software people like Richard use, but you haven’t heard much from scientists modifying and using these tools for specific research cases. PhD student, Richard Vogg, is working with multi-camera set-ups to track lemurs and macaques solving puzzle boxes in the wild. His work is part of a larger movement to automate behavioral analyses of...
Jul 31, 2024•33 min•Transcript available on Metacast Generative AI can struggle to create realistic animals and 2D representations often have mistakes like extra limbs and tails. If 2D wasn’t hard enough, there are researchers working on generative 3D models. 3D models present an extra challenge because there is paucity of training datasets.In this episode, PhD students Sandeep and Oindrila walked us through their work on creating 3D animals using 2D data. Join us to learn about their pipelines, quality control, tie in with iNaturalist, and how th...
Jul 23, 2024•1 hr•Transcript available on Metacast Today, we sat down with Dr. Ignacio Escalante Meza to learn about opiliones and treehoppers. Opiliones, known as “daddy long legs” in the US, are understudied arachnids known for their tenacious locomotor behavior, sociality, and chemical communication. Treehoppers communicate through the stems of plants using vibrations. They can signal danger, attract mates, and communicate with their offspring. Join us to learn how researchers turn their vibrations into sound waves and study what they have to...
Jul 15, 2024•38 min•Transcript available on Metacast