Model Interpretation (and Trust Issues) - podcast episode cover

Model Interpretation (and Trust Issues)

Apr 25, 201617 min
--:--
--:--
Listen in podcast apps:

Episode description

Machine learning algorithms can be black boxes--inputs go in, outputs come out, and what happens in the middle is anybody's guess. But understanding how a model arrives at an answer is critical for interpreting the model, and for knowing if it's doing something reasonable (one could even say... trustworthy). We'll talk about a new algorithm called LIME that seeks to make any model more understandable and interpretable. Relevant Links: http://arxiv.org/abs/1602.04938 https://github.com/marcotcr/lime/tree/master/lime
Model Interpretation (and Trust Issues) | Linear Digressions podcast - Listen or read transcript on Metacast