#26 SpaceNet 6 Challenge Results: Multi-Sensor All-Weather Mapping - podcast episode cover

#26 SpaceNet 6 Challenge Results: Multi-Sensor All-Weather Mapping

Jul 15, 202039 min
--:--
--:--
Download Metacast podcast app
Listen to this episode in Metacast mobile app
Don't just listen to podcasts. Learn from them with transcripts, summaries, and chapters for every episode. Skim, search, and bookmark insights. Learn more

Episode description

SpaceNet is a non-profit dedicated to accelerating open source, applied research in geospatial machine learning. In this episode, CosmiQ’s Ryan Lewis, Jake Shermeyer, and Daniel Hogan discuss the SpaceNet 6 Challenge where participants were asked to automatically extract building footprints with computer vision and AI algorithms using a combination of synthetic aperture radar (SAR) and electro-optical imagery. Hear about the challenge’s winning artificial intelligence models and the tradeoff between inference speed and model performance.

SpaceNet is made possible by co-founder and managing partner, CosmiQ Works; co-founder and co-chair, Maxar Technologies; and all the other Partners: Amazon Web Services (AWS), Capella Space, Topcoder, IEEE Geoscience and Remote Sensing (GRSS), the National Geospatial-Intelligence Agency, and Planet.

Learn more at www.spacenet.ai, and at the DownLinQ (https://medium.com/the-downlinq)

For the best experience, listen in Metacast app for iOS or Android
Open in Metacast
#26 SpaceNet 6 Challenge Results: Multi-Sensor All-Weather Mapping | Training_Data podcast - Listen or read transcript on Metacast