The Beginning of the Universe with Brian Keating - podcast episode cover

The Beginning of the Universe with Brian Keating

May 06, 202553 minSeason 16Ep. 27
--:--
--:--
Listen in podcast apps:
Metacast
Spotify
Youtube
RSS

Summary

Neil deGrasse Tyson, Chuck Nice, and cosmologist Brian Keating explore cosmic inflation, quantum fluctuations, and the universe's earliest moments after the Big Bang. They discuss the Simons Observatory's mission to detect gravitational waves and the complexities of measuring the cosmic microwave background. Keating recounts the BICEP2 experiment's retracted discovery and its impact on cosmology, while also tackling listener questions about the origins of the universe and the nature of dark energy.

Episode description

Could the Higgs field vary across space and time? Neil deGrasse Tyson and comic co-host Chuck Nice answer fan questions on cosmic inflation, quantum fluctuations, and the earliest moments after the Big Bang with cosmologist Brian Keating.

NOTE: StarTalk+ Patrons can listen to this entire episode commercial-free here: 
https://startalkmedia.com/show/the-beginning-of-the-universe-with-brian-keating/

Thanks to our Patrons Walter Krutzfeldt, Roni Rotstein, Brandon Herrera, David McCarroll, Sina, MArcus Richardson, Adam Poder, Mark Davis, Doug Fish, Bill McMahon, Brucie the psuedo p*nis power washer martin, Kyra (Kē-rah) Smith, Robin Godefridi, Randal Davis, Mike Roseberry, Steve Schaefer, Matt Witheiler, Allan Whitescarver, Buck Futterman, Nick Singh, Joanna Gladh, Ronald Sharo, Justin, EMIL FORSBLAD, Dan Murrell Jr., Steve Cotton, PSP Geezer, Jeffery Frederick, Matthew Stansell, Eric, Muffin mNa, SixStringBuddha, Zahra Ali, MorrigaiNE, ExoTikMixed, Connie, Keith Johnson, Kearne Anderson, Cæsar Hernø, Bro Dude, Daniel Garvens, Will S. , Stanton Vedell, Logical HIllbilly, Tasha RAth, Rook Silva, Eugene, Darren Ward, Nancy Wolter, Vadi S, PoxyFoxx, David Alexander, and Charlie Cervonefor supporting us this week.

Subscribe to SiriusXM Podcasts+ to listen to new episodes of StarTalk Radio ad-free and a whole week early.
Start a free trial now on Apple Podcasts or by visiting siriusxm.com/podcastsplus.

Transcript

Chuck loved me some cosmology. Oh, yes without a doubt it makes me look good every day Cosmology? Oh, that's right. We're talking about cosmology on this show. Yeah. It's a good one, too. Yeah. I mean, it's one thing to just. look at how people used to think of the universe. I want to know what's going on right now. And that's what we did. Oh, we got it all. In that episode, coming up on StarTalk. Welcome to StarTalk, your place in the universe where science and pop culture collide.

DarkHawk begins. This is StarTalk. Neil deGrasse Tyson here, your personal astrophysicist. We're doing cosmic queries today. And guess who brought them all? Chuck, nice, Chuck, man. Hey, that's right. I bought the goods. You bought the goods. Yes, I did. We got everything that you ever wanted to know, and I'm going to read four of them.

Because that's how many we get. But they're very fleshy replies when we do that. The way I look at it is we have a reservoir of inquiries And that gives us fodder for discussion. and eventually All of these questions will be answered. These questions are all from our Patreon supporters. Absolutely. We love them. We're going to do cosmology today. Oh. Yeah. I did my hair very special today.

So I'm very happy about that. I'm glad that we're doing cosmetology. Cosmetology, yeah. That's what it is. So we've got with us today one of the most active scientists in that space. The space of cosmetology. Brian Keating. Brian, welcome to StarTalk. It's nice to be with you in person, finally. Yes, yes. You're active on social media.

And I was honored to be a guest on your podcast. Two-time guest, yeah. Two-time guest. And what's the name of it? It's called The Into the Impossible Podcast, named after Arthur C. Clarke's famous dictum that the only way of discovering the limits of the possible is to go beyond them, Into the Impossible. Did he realize that once you get into the impossible, it is the possible? Well, I don't know. There's nothing to be rational about this joke. You've been... thinking about cosmology especially

signatures of the Big Bang your whole career. Yeah, this is what I've been doing. I've been dedicating my life to understanding what happened on the Tuesday before the Big Bang. Can you answer that question? Let me get your pedigree out of the way here. So, you're Chancellor's Distinguished Professor of Physics in the Department of Physics, UC San Diego. That's right. Are you the student's distinguished professor? I don't care what the chancellor thinks of you.

I just teach to him. That's funny. You're also a principal investigator in the Simons Observatory. thing down here in the city. Yeah. At the Flatiron Institute. That's right. Yeah. Jim is a titan of the city. unfortunately passed away last year at age 86. Jim Simons. Jim Simons, yeah. He was a philanthropist and a mathematician. He had multiple careers. He worked for the government. He broke codes during Vietnam.

Not in that order. I left out one thing. A hedge fund manager, 26 richest person in the world. But one thing that's most important I left out is that his wife, Marilyn Simons, has a distinction and honor Not only of having an asteroid, I mean, a lot of people have asteroids, but we got an asteroid named after Jim. Anybody's got an asteroid. Duh. But Marilyn. Let's be honest, the solar system is littered with that. But Marilyn has the honor, the distinction.

being one of my first babysitters. So she got experience, early experience with dark matter. That's right, dark matter is where she got her experience. Two or three, yeah. Wow, so you guys go way back. Way back before the birth, before my own personal Big Bang, as Chuck said nine months earlier. So what's up with the Simon Observatory? What's your relationship to it again? So I'm what's called the principal investigator. So I'm the co-founder of it along with your friend.

friend David Spurgle. David Spurgle is on an earlier episode of StarTalk as the chair of the committee. representing NASA investigating UAPs. He took that out in our archives. He took over from Marilyn Simons as a president of the Simons Fund. So he had to kind of withdraw from the Simons Observatory, otherwise he had a conflict of interest. Conflict of interest? What is that? Is that a thing now? Is that what? What? Really? For people like David. Yeah, very ethical people. So, um...

So in 2014, in this very city, there was published in the front page of the New York Times on March 17th, St. Patrick's Day, was published an article that said, Space Ripples Herald the Origin of the Universe. And it was an announcement. that the BICEP2 experiment had detected what are called gravitational waves, primordial waves of the ripples of space-time. So BICEP2. That's an acronym. What's that acronym for? I created the acronym. It was Background Imager of Cosmic.

extragalactic polarization. What's it looking at? Space guns. Guns. Okay. Disgrace gun show. Background imager of cosmic extragalactic polarization. Now, why is that so clever? Why is that not just a dad joke? Well, the signal that we're looking for...

is called polarization. And that polarization pattern, if you were to be able to see it with special polarized glasses, we'll get to in a few seconds, you would see a swirling, twisting, or curling pattern. So I wanted to make bicep the muscle that does curl. And I got away with the dad joke even before I had kids. I see what you did there. See what you did there. That's not bad. The curl is only exercises one muscle. No other muscle. Curl is the bicep.

That's right. All right, very good. So, yeah. So, what were you on that project? Well, I founded the previous predecessor experiment called Creatively, Bicep One. It was the first incarnation of it. And just like with your iPhone, every couple of years you upgrade it, you get more pixels, you get more data. But the cool thing about it literally is that there's an orbiting.

No, it's in the South Pole, Antarctica. So it's at the very bottom of the world. Oh, I know that. Oh, my God. That's right. Penguins would call it the top of the world. That's right. I don't want to be too polar bear specific. Eccentric. So I created that experiment along with my late great colleague and mentor, Andrew Lang, tragically took his own life soon after we got our first data from the second version of the experiment, but that's another podcast.

But that experiment was built intently to do nothing else but measure these waves of gravity if they existed. And we thought, oh, we'll never detect that. It's minuscule. We're looking for signals that are one billionth of a Kelvin. above the CMB's average temperature, which is 2.7 Kelvin. So it's a minuscule. We didn't think we'd do it. So the challenge there scientifically is to see a signal that low, given the fluctuations that are already there. And the Earth.

The atmosphere, yep, exactly. All radiating into the experiment. That's right, exactly, yep. It's literally a string with a bell on it. But the crazy thing is, in 2014, you know, we announced we did it. We saw this kind of needle, you know, and it's actually like a piece of hay in a haystack. Can you find the hay in a haystack? That's funny. Piece of hay. You know what you do with the needle. Actually, Iron Man said this in one of the movies, but we all knew this.

Right. Do you want to find Needle and Haystack? just burn down the haystack, right, and the needle's left. Or take out an electromagnet, and you'll find the needle like that. So this experiment was designed to do one thing only, and we never thought we'd do it. If we detected it, we'd be kind of...

The onus is on the experimentalist. You want to know enough that you can detect it, but you have to not fall victim to the most pernicious of all scientific fallacies, which is confirmation bias. You're looking for something. Oh, you found it. You're right. But we did. We found it. And I remember telling my wife, this is going to win somebody a Nobel Prize. Spoiler alert, my first book's called Losing the Nobel Prize.

It wasn't this guy. And it wasn't any of us because it was retracted. Later on, as Neil mentioned, we had the dude go through the humiliation of after being on the front page of the New York Times, press conference at Harvard. You know, a real show all around the world, CNN, everybody. So what was your academic?

affiliation at the time? So I was a professor at UC San Diego. Where you are now? Yep. I've been there 21 years. So they probably were running with this. Oh yeah, we were on the front page of the The most important paper of record, the San Diego Union-Tribune. The Union-Tribune, okay. I was on the cover of it. Yes, exactly. So that discovery launched into motion what would become the Simons Observatory because that day...

I got a call from Jim Simons. He had already been funding a predecessor experiment of mine called the Simons Array, which is a small grouping of telescopes meant to also look at the same signals, but other signals too.

And he called me up in that distinctive voice after smoking Merritt cigarettes without filters for 60 years. He started smoking when he was in his late teenage life. Don't do that out there. Brian. Yeah, he was a chain smoker. Hey, Brian, how are you? Exactly what he sounded like before. I just got done. Oh, I can't do boss. Plus it doesn't sound good in Boston. Oh, that's wicked. Wicked. That's a diner waitress voice.

I'm Khyas from Bangladesh and I support StarTalk on Patreon. This is StarTalk with Neil deGrasse Tyson. So we left off in your complicated life where you had the BICEP2 experiment that reported what would later be determined to be an erroneous detection. Meanwhile... Jim Simons. seeing what you're seeking, wanted to participate in that. puts you ahead of an early version of the Simons Observatory, Simons Array.

But then the bicep 2 result comes out. That's right. Which is not good for him. That's right. Because bicep 2 is leading the world to what we think has has discovered this these these ripples exactly but but really they haven't but he doesn't know that so he's like So he calls me up and I'm like, I don't know what to say because I knew in the back of my mind there could be problems with the result and we might need to confirm it.

with another instrument which later turned out to be the case or that we were actually right and yeah maybe i might have to say look you gotta i gotta give you back your money i gotta have some integrity and refund your money, so to speak. And I was going crazy. we're gonna get you know 10 million dollars and give it back to it no that's when i just ran out of integrity money and integrity 10 million dollars no more integrity

So then how was it determined? Yeah. Because I remembered this. I wasn't close to it, but it was happening. It was a very important... It was an important episode in science, actually. Before you even get there, can you tell me exactly what was missing from the discovery? that invalidated. Absolutely. Let me take one giant step back. Why are we doing any of these projects to begin with? So looking for gravitational waves. Take yourself back to 2014, right?

We hadn't detected, LIGO had not made its detection of gravitational waves. Obama was president. Ukraine had not been invaded the first time. Hold on, guys. Give me one second. staving off. Once he said Obama was president, I'm like, oh god. The elevator had not been rid of the escalator. How to annoy Chuck.

So at that phase, we had not detected gravitational waves directly as LIGO had. We had indirect evidence that they existed, but there was a theory that had been promulgated since the early 1980s by Alan Guth. So the inflationary theory is the answer to the question, what caused the Big Bang? What made the Big Bang bang? And the postulate is that there's a so-called quantum field that filled the whole universe that fluctuated out of nothing.

and the universe came into existence. They do stuff out of nothing all the time. They are the magicians of the universe. So this discovery, if it were true, if it were confirmed, would be tantamount to discovering the Big Bang itself, which it was done not far from here by Penzias and Wilson, discovery of the CMB, the cosmic. microwave background, which is what butters the bread around the Keating House. And just Wilson at Bell Labs in Jersey. Exactly. Not too far from here.

By the way, it's across the Hudson River. That makes it far. I know you're in here from San Diego. Don't listen to this guy. He's a Manhattan New Yorker. He lives in New Jersey. That is true.

What town? Stony Brook. That's where Jim and my dad were professional. Oh, that's why that would be the case. So inflation. So we claim that we discovered this. So that's why everyone said this is going to win an Nobel Prize because they won an Nobel Prize for discovering just the heat left over from the Big Bang.

all the more so for discovering what ignited the spark that ignited the big bang wow so that was why i designed bicep originally then it became bicep 2 like the iphone gets new detectors cameras and we upgraded it so we ended up building this telescope and then

When I got this call from Jim Simons, I was in this pickle, right? Because I don't know what to say. I kind of invented, I was kind of the father of the predecessor experiment to BICEP2, BICEP1, and I was definitely the father of that. And then I was involved with this new project that he was funding. Now, what ended up happening was we had relied on data not from our own instrument.

Actually, someone had taken a picture of a PowerPoint slide from our arch nemesis, the Planck experiment. So the Planck experiment is a billion euro experiment. BICEP was a mere $10 million U.S. dollar. European Space Agency. Out at L2, Lagrange Point, orbiting around the sun and the earth, the farthest, coldest, deepest, darkest.

Incredible team, thousand people working on it. So Earth, Sun, L2. Earth, Sun, L2. That's what JWS2 is. Yeah, exactly. It was one of the first, the second one after. We're hanging out. We're chilling. We're chilling. Let their own stink out. Two cops on steakhouse. Sitting there at L2. Should you go for coffee this time?

I went for coffee last time. It is true because they're like parked there as Earth orbits the sun. They can not get a validation out there. It's not easy. So Jim calls me up. What's going on and what to do next? So we ended up discovering that we didn't see this pattern that would be the imprimatur of the Big Bang. We didn't see this cosmic swirling curls.

from the Big Bang. Who determined you didn't see it? We, along with our competitor, the Planck teams, we worked together to find out that actually what we saw was nothing more than some cosmic schmutz. Some dust. There were people who studied dust. Absolutely, that's right. To them, it's their livelihood. One's astronomer's dust is another astronomer's lost Nobel Prize. So it wasn't a blunder joke. It wasn't like we put our thumb over the camera or something like that.

We actually measured exquisitely precisely this signal that is astrophysical in origin at the billionth of degree Kelvin level. I mean, it's an exquisite. But it's a local signal, not a thing that's happened to be a different signal. Exactly. That's all. So congratulations on the precision of the merit. It is. You idiot interpreting it the wrong way. However, what it did was it's like,

Oh, this thing works. That's right. It's the most precise measurement of what's called an astrophysical foreground. Something in the foreground, in the space between you and the cosmos.

that is made in the astrophysics is actually the same material that makes up meteorites and i brought some meteorites for you guys here so dust is ubiquitous and the same type of dust that obscured our measurement and prevented me from winning a nobel prize is actually the same stuff that the planets are made of and so it's identical to that

It happens to be magnetic, and it produces radiation and heat. And so we saw it, and we misinterpreted it as the signal from the beginning. It produces infrared. Infrared and microwave emission, yeah. So Jim Simons, upon hearing this, he's like, well, what do we do? And then when we retracted the claim, that we had detected inflation. Humiliating. This was not like an easy thing to do. Still, he said, I want to go for the signal more than ever now, but we have to remove the dust.

so it's a good thing like you said Chuck it's actually a good thing when you make a mistake you say oh I gotta refine what I do it's like you go out to your car there's dust on the windshield I gotta clean the windshield except you're not going out to the galaxy and removing the dust

you're removing the dust signature in your data. Exactly. So how do you do that without a vacuum cleaner or a dust devil? You need ways to do that. Exactly. So what Jim was wise about and what David Spergel had figured out, because he was one of the ones that killed off the bicep interpretation. He figured out we need to have multiple colors of light.

only had one color of light. We couldn't see it in multiple colors. And when you have multiple colors, you learn about the spectrum, you learn about the characteristics. So what Simon's Observatory now does, and why Jim funded that, is it can see the cosmic signal if it's there. We have to assume it may not be there just because we want it to be there.

But it can also see the dust. And when you have the signal, you have the cosmic signal plus the dust signal. So what you're saying, in your one band of light, you could not distinguish the cosmic signal from the local signal. There's been two bands of light.

will show up differently in two bands. And now you'll be able to identify. And now you've been able to take it and take it out. But that's not what I remember most about this episode. I remember the ambulance chasing theorists who came behind this false result. Thinking it's real.

coming up with an explanation so they can get their Nobel Prize, too. That's right. Wow. That's what I remember. I got emails. There's like 100 theories? How many theories? Well, there's 1,800 papers published. It's my most signed paper, embarrassingly enough. But yeah, so it led to this disaster in some sense. led to the initiation of this new, most powerful instrument.

ever made to do the Cosmic Right Back. And that's the Science Observatory now, from which you are PI. Congratulations. Thank you very much. That's very cool. That's a great story. All right. Thank you. We're all familiar with... Polaroid sunglasses. And...

some subset of those who own them know what they're doing. But I think most people don't. It's just a type of sunglasses that you want to wear. I always have polarized sunglasses with me in my backpack just because you never know when you need to pull. We need to hide from the paparazzi. And their flash might bounce off of something, so I need polarizing sunglasses to block out that bounce light. So catch us all up on how and why...

polarized observations work. Yeah, so light has three primary properties. It's color, spectrum. its intensity, how bright the light is, and also something called its polarization, least familiar property of light. And light is an electromagnetic wave. So when a wave oscillates, the plane that it's oscillating up and down in, the electric field vectors are going up, down, like that, and the magnetic field vectors are going like that. so it's two waves one's going up and down

I'm sorry, too. That's right. One's going up and down, and the other one is going side to side. Magnetic. Electromagnetic. Electromagnetic. Right. Okay. And when light interacts with matter, you see like a glare. You see a reflection there. Well, what polarized sunglasses do is that they oppress and suppress one of those. Oppress. Yeah. The way that polarizing sunglasses work is that they actually suppress one of the two polarization states of light. It happens to be the horizontal one.

And that's why you want to wear them at the beach or you want to wear them when you're driving because you get that glare. Or skiing. Absolutely. And that's why they're more expensive because you have to add this film that has molecules that are actually made of polymers. that actually suppressed one of those two states of light, but let the rest in, because you don't want to be totally dark. So polarized sunglasses

suppress one of the two polarization states of light. They make the light 50% darker. Also in photography called neutral density filter. So the film that's on these glasses actually knocks out one of the two polarization states of light, the one that is responsible for the glare that you see. So that means if you have two of them and if they are oriented just right. So I hear some light coming through. Yeah. Okay.

So this is a very expensive demo here. So this is actually knocking out half of the light in there because only half, it's an unpolarized source, so half of it's polarized. One way, half it's polarized. The source is unpolarized. And then if you put another polarized source in front of it,

and as I rotate it, eventually the axis of polarization will be orthogonal, and that will block out 100% of the light. Perpendicular. Perpendicular. There it is. So now it's completely orthogonal or perpendicular, as you would say. And then as I rotated slightly at the off axis, now it lets in some light. So that's how polarization works. That's why you can see through the glare. It doesn't affect your eyes. It doesn't hurt your eyes when you're skiing, as you said.

And so that's what these instruments are doing. They're looking for polarization, not of optical light, but of microwave light from the Big Bang, the leftover heat from the Big Bang. So remember I said inflation. Inflation is this theory that there's this quantum field that fluctuated, that produced everything that we know and love about the Big Bang. it would also produce what are called gravitational waves, waves of the fabric of space-time itself.

Those waves would perturb the electrons, the protons, early hydrogen atoms in the universe when the CMB, or cosmic microwave background, was produced about 400,000 years after the Big Bang. When light interacts with matter, as you see from the glare, it becomes polarized. that matter in its orientation would change depending on how much gravitational wave energy was present when the CMB was produced. So it's actually a gravitational wave detector.

We're using the photons of the cosmic background as a type of film, if you will. and onto which these waves of gravity, if they exist and only if they exist, they get a polarization to them, a curling, twisting pattern of polarization that we call B-mode polarization. Wow. So it's a lot of logical stuff, but actually it's very well tested and very well theorized. It just hasn't been detected yet. It's quality physics. Go ahead to that. Yeah.

That's super cool, man. Yeah, literally. And we have to use, we can't use an iPhone. We got to cool our detectors down to my colleague Suzanne Staggs at Princeton. She's built detectors that operate at 0.1 degree above absolute zero using isotopes of helium. She does incredible stuff. And they're superconducting detectors. They're basically little thermometers.

so you know you go outside i'm not in new york but in san diego you go outside you can see the sun with your hand you can basically detect where the sun is using its infrared and that your skin can absorb infrared heat Well, so too, we can have detectors that can see microwaves and infrared radiation, but they have to operate where it's really cold. Otherwise, it's like building the biggest James Webb Space Telescope and putting it in Manhattan.

And so what's the fluctuation of temperature that you're looking for between what the universe has cooled to and what would have been present right at the Big Bang? Yeah, exactly. Exactly what we're looking for. So there'll be deviations. in about a part in a billion. So a nano Kelvin. So in other words, if the universe on average is about 2.7 Kelvin, it'll be 2.7 plus a nano Kelvin in that direction and 2.7 minus one nano Kelvin. So you're looking at the ninth decimal place, right?

So a billionth of a degree. Okay. Did somebody give you money to do this? Wow. That's insane. So let me drive home. why we need inflation. Okay. Okay. Because Let me tell you why. Because we're going through a transition. In this direction. It's 2.7. Give me a few more decimal places. 2.726. It's 2.726 degrees. in that direction in the universe. And I look in the other direction, it's 2.76 degrees.

Right. And how the hell do they know to be the same temperature as each other to a thousandth of a degree in this room? The temperature fluctuates by degrees. Exactly. By whole degrees. In this corner, that corner, over there, near a lamp. The whole universe is that. That's right. Just one. And so what Guth said was the way to get that to be the case when the universe was small and all talking to itself in equilibrium, temperature equilibrium, then it quickly expanded. Right. Like, so fast.

It couldn't go out of equilibrium with itself. So it all has the markings of that same temperature from a bajillion years ago. That's so cool. The justification for inflation yes, yes, because all right expansion It gives you the uniformity yes across the entire expansion correct Wow Okay, I'm done I mean, that is literally... Who thinks like this? Who thinks like this? Oh, my God. Wow, that's brilliant. I mean, that's it. That's right. So the inflation explains it, but then we needed...

a cause for the inflation. We had to pull that out of our ass. What was that? Basically, I mean, it results as related to what's called the multiverse. Basically, without the multiverse, You don't get inflation in most models, according to most models. And that causes some people like a face transition. There's a face transition, yeah, and the actual dynamics of it.

can be explained using quantum field theory which is a theory everywhere in space there's a quantum field okay you guys right now you sound like an episode of star trek Hello, Dr. Tyson, Dr. Keating, 10-year-old Reuben, and 6-year-old Eli here from Harrisburg. PA. If everything was compacted into one tiny dot smaller than a speck of dust before the Big Bang, what indeed formed the dust?

What was around prior to the Big Bang, doesn't this mean that there was another universe that collapsed to form ours? So what's the deal? I wish that those young people would have said, I have a very simple question for you. They're basically asking what caused the Big Bang. What caused the Big Bang? What caused the universe to start expanding in the first place? So the mark of a good scientist should be, we don't know. We don't know for sure.

And there are alternatives. That's what he says when he doesn't know something. It's the mark of a good scientist when he doesn't know. That's right. My wife sends me to the grocery store to get something. The mark of a crappy scientist who should have known and doesn't. Right. Okay. That's why we call it research. What you mean is,

It is not known in the field. Not that you don't know it. Exactly. But perhaps you should. We are trying to know the answer to that question. We is the full community. The community of scientists, but specifically in the Simons Observatory. their very question is the question the Simons Observatory is in part designed to answer. Was there any sense? Stephen Hawking used to say,

It's nonsensical to ask what happened before the Big Bang because time came into existence. I was going to say. It's like asking what's north of the North Pole, which we all know. santa claus right there's got to be santa claus up there but in reality we can answer that question in the affirmative as you actually hinted at there could have been a universe that existed beforehand that actually collapsed in what we used to call a big crunch now we call it a bounce

They're actually some of the most eminent theorists on earth, including those that... I never liked crunch because that implies it's brittle and it makes a crackling sound. But it's cereal revenue. And delicious. Anything with the word crunch in it is definitely good. Cap it. Cap it. How do they punctuate that?

So the actual answer is we're trying to determine not what happened. Because in science you can't prove something happened. Like you can prove 1 plus 1 equals 2. Or 1 times 1 equals 2 as you tell it out. Don't get me started. But in reality, we can't prove a physical fact, but we can falsify alternative hub models. So if we see this twisting, roiling, twisting pattern of polarization called curl modes or beam modes,

That will falsify the other models, that there was a big crunch, that there was a previous existing universe in a cyclical model. So we can prove those wrong. in getting more data about this. If we do see it, that would be the death knell for the alternative models, and that would be a huge triumph in the history of Cosmo. Okay, so you don't know the answer. Okay, next question. All right, let's clear that up. All right, this is... It's good to know that...

floating ideas do have ways of being tested. Exactly. And rejected. Because some things you can just conjecture anything, literally like thousands of theorists did, that are consistent after the fact. But the key thing is to do it before. You want a pre-diction, not a post-diction. Exactly. Retro. Good day, gentlemen. This is Matt from Oklahoma. My burning question is about the origins.

of the universe what exactly are we trying to gain by looking into the past will it help advance the population on earth in a technological standpoint or is it solely for the history book. I got a feeling that Matt D has a little problem with your work. But as polite as that was, he's really questioning your existence. Yeah, that's right. I have to justify it to myself and the taxpayers as well.

And I don't mind that. And actually, I want to ask you guys that as they're stepping because Matt's not here. What's your favorite day on the calendar every year? My favorite my birthday birthday. What about you now? I like the four cardinal points of the calendar. So what are those? The equinoxes and the solstices. Okay. You know what? When he was like, I like the four cardinal points, I was like, Jesus, Neil. But then I was like,

Oh my God, he actually does. Because as long as I've known him, he's the only person that points those days out. I look forward to those days because that's when he's on Twitter. I know that's the only time.

so uh you mentioned it and it's related to yours so it's your birthday what is a birthday what is something else like christmas their anniversary the kids birthday whatever you want uh but it's a beginning and why do you like that because you have no idea from first-hand evidence what happened before you were born do you you have to rely on other people's

eyewitness testimony. Well, I have video. I don't want to see that. He was reincarnated, so he had his own big crunch, too. So people want to know what happened before they came here. It's ultimate in history. And that fulfills a need in us. Like, does knowing history create some excess GDP? No, but it's part of being a well-rounded, educated, civilized society. And knowing the answers to the big questions is what makes us different from the animals.

we're the only people homo sapien means one who is wise not one who knows it's one who is wise so we have wisdom that is to ask questions that perhaps have no answer but that's what makes us unique and different from all other species Okay. Listen, I think you defended yourself well. There you go, Matt. Give me some more. This is Alan Rayer who says, Hello, Dr. Tyson, Dr. Keating. I've always wondered. How and when will CMB last in our frame of reference? When will radio waves kick in?

Should I say C-R-B? I like that. Let me preamble that by saying radio waves at one point are not that distant past. included what would later be called microwaves. And microwaves are simply small radio waves. And they're really like a few centimeters. And radio waves are even longer than that. So historically...

it's still radio waves. But since we have a word for it, we use it. The small radio waves we call microwaves. Pick it up from there. So the... if you go out into the universe and you make a little box and it's one cubic centimeter okay inside of that box will be mostly nothing there might be maybe maybe you know a proton or neutrino but mostly there'll be 419 photons from the big bang

and they all have an average wavelength of about two millimeters. On average, there's a spread, it's a black body. So that two millimeter wavelength over time has stretched from much, much shorter wavelengths. Before that, it was infrared. then it was optical, then it was ultraviolet, and eventually it was gamma ray when the universe came into existence. Highly energetic. I don't think that was a photon. that you can describe that way moving through the volume before recombination

Right? Oh, yeah, I don't realize. You can think, can you? I'm thinking of the free photons since then. That's a temperature. from which it, but you're saying, we're okay, you can go before that, it's just not a free photon. It's not, it's not a free, yeah, it's scattered. It's a scattered photon, okay. Just as you did that video recently, that's beautiful. about how long it takes for a photon to get out of the sun. Oh, yes. Okay. Tightly coupled matter and radiation.

The universe has been expanding and cooling, so eventually it will get into the radio waves, but keep paying your taxes because that's going to take billions of years. The universe has to expand by more than a factor of 10. from where it is now which could take more than a factor of 10 times the age of the universe because the wavelength

10 times bigger is basically when we start calling it a radio wave. So the universe has to be 10 times bigger. There's a stretching into the universe. That's so cool. So the answer is yes. I don't know if you want to spend money on the trade market. But just to clarify, before it was the cosmic microwave background, it was the cosmic visible background. Yeah, infrared. Infrared background. That's right.

Optical. Visible. Visible, yeah. Yeah, and then ultraviolet on the other side and with a cosmic x-ray background. Yeah. And then gamma ray background. That's right, yeah. There you go. Okay. I love it. This is Yogesh Jag, who says, Hello, Lord and I. It's Dr. Keating and my personal astrophysicist. Oh, I love that. Yogesh from Nagpur, India. My question is, Is the CMB anisotropy really random? For those who may not know, what is anisotropy? It means non-isotropic. Right.

That makes sense. And why would we and then? Why isn't it just A? So tell me about isotropy. Yeah, so isotropy is the feature that you have complete uniformity and things look the same. and they are the same homogeneity it's similar in every direction in every direction which way you point the tallest no matter what so if you're ever flying on an airplane and you're in the clouds you go through a cloud and you go through a cloud yeah

And that cloud, to you, when you look out the window, it looks perfectly isotropic. Anywhere you look out the window. It's the same brightness. It kind of looks like you're inside of a ping pong ball. Everything is the same brightness and intensity. That's isotropic. That's perfect isotropy, the principle of looking the same everywhere.

But anisotropy just means fluctuations from that amount. So it's not that. It's not that. You look in one space, you'll see something different than you look in the other space. That's right. Now, if the universe were perfectly symmetric at earlier times, The amount of matter was the same everywhere. The amount of dark matter was the same everywhere. Any exotic particles, everything was exactly identical.

the universe would have no way to know where it should form a cluster of galaxies, a single galaxy, a planet, et cetera, et cetera, right? So if you had perfect isotropy, and Isaac Newton realized this 300 plus years ago, perfect isotropy is incompatible with our existence because we don't see perfection wherever we look we aspire to and we also know that and that there's clumps of

dark matter. That's what we know. Exactly. So it's kind of what's called answer. We are clumps of matter. We are clumps of matter ourselves. So the question's asking why What is that significant of? And it's basically related to the fact that we formed in a region where there was an excess of dark matter. Where did that excess of dark matter know where to coagulate, though? That's where inflation comes.

Because all fields, all quantum fields, have tiny fluctuations and they are not isotropic either. Quantum physics. enabled this universe. That's right. We are quantum fluctuation. We are a product of quantum. If inflation's right, we shouldn't presuppose that it is, but we're looking to see if there is or not. So yeah, so that and those pools of dark matter knew where to coagulate.

because of the fluctuations in the quantum field. So now these fluctuations, are they disruptions in the field itself that create? something pops out of the field and that's the so the universe itself isn't just one big field According to some, that the universe is in a particular instantiation of these conditions of our quantum field in what's called the multiverse.

When we were kids, there was just a universe, right? Now there's a multiverse, which some say should be more encompassing, just as we know we're just one star, one planet. There's many, many billions of galaxies. There could be trillions or an infinite number of universes, but where do they inhabit? They inhabit the multiverse. The multiverse is the collection of all points in four-dimensional space-time and maybe higher space-time that could wherever will exist.

so yeah so we are a fluctuation in that greater space you're absolutely right and then within those fluctuations it's like waves in the ocean They're waves upon waves upon waves. And we are the manifestation of this infinite series of wave trains that perhaps dates back to the Big Bang itself. So Chuck, as insulting as it sounds to accuse someone of being a fluctuation. It's actually quite the compliment. Cosmically speaking. Look at that.

All right, good question there. Just a couple more. All right, this is Brandon Christian. Brandon Christian says, hello, Dr. Tyson Lord. Nice, Dr. Keating. This is Brandon from New Jersey. My question today is, do we have, any idea what could possibly be on the other side of the CMB would it be considered a part of our universe if we were to discover it or would it be something else altogether okay So the CMB is the shell of photons. It's a...

a fictitious shell of photons that are coming to us from a particular event in time. What is fictitious? What's that word show up in your hand? Well, because it's an artificial, there's no place you can go where the CMB is, which is what the question is asking, right? The CMB is a representative of an event that occurred. The event at which the very first electrons fused with the very first protons, making the very first atom hydrogen.

When that happened, the universe became transparent to those waves of light that were existing beforehand. Those waves of photons then can free stream and come towards our telescopes. They come in all directions. So it's a moment. As you look back in space, you're looking back in time.

So it's a moment in time, and it looks like a shell to us. We look out and we see a shell of photons, a little bit hotter here, a little bit colder there, but on average, 2.726 degrees Kelvin above absolute zero. There are tiny fluctuations in that.

So beyond that just means earlier in time. So yes, there were things earlier in time, but it was a pretty boring life. It was a pretty boring before that 200. It was nearly 400,000 years before that. Exactly, yeah. So for 400,000 years, There was nothingness except for there was protons and neutrons and plasma and so forth and electrons.

But there was no cosmic event. There's no place. There's no there, there. Well, the universe was just glowing at these different temperatures. Exactly. It was a plasma. It was almost a uniform plasma. Right. Okay. Expanding, cooling, and then shifting and wavelength. Red shifting and wavelength. There you go. Wow, right? Super cool. This is 1701 Kara, who says,

Greetings from Tennessee, Dr. Tyson and Comrade Nice. Why are you going to make me Russian? I have a cosmic query regarding the Higgs field. It's the current model of the Higgs field. evenly distributed. Or could there be areas in space-time where the field is more dense? That's a great question. Would that mean that it's giving different masses to particles over here than over there? Wouldn't that be wild? That'd be a messed up universe.

What last are you? So a good friend of mine, Matt Strassler, guys should have him on. He wrote a wonderful book about this called Waves in an Impossible Sea, and it's all about the Higgs field. I'm glad that you are. You just like that impossible word. I know. I love it. You'd be surprised how many books have the word impossible. So the Higgs,

field is what, and that's why it's impressive. Most people talk about the Higgs boson. That's not what's so fundamental. The Higgs boson is just one instantiation, one creation moment of a particular fluctuation of this field called the Higgs field. Yes, it could vary from time to time, and the most exciting thing is that

It's what's called a scalar field. I don't want to get too technical, but that's the first and only scalar field that we know about. The other one that's postulated but not known yet to exist, we hope we can shed some light on it, no pun intended, is the inflaton field.

Those are scalar fields. They don't have what are called vector properties. They don't have property. They only have a value. Like the temperature in this room is a scalar. It's a point. Every point in space, there's a value, you know, 30 degrees Celsius. It's kind of hot over here.

you know i'm talking it gets even hotter but the point is it's a number at every point but the higgs field is a special case like that the other types of field like fermions quarks and other types of fields in photon fields they are not they have a sort of direction at each point in space

Like a gravitational field has a value and a direction that it wants to pull you. So this just has a value. Exactly. So why do we care about that? So if it did vary, it could be connected to the Higgs field and the inflaton.

So that would be really exciting. It would say that the field that is responsible for giving inertia and mass to massive particles was in existence and coupled somehow to the origin of the universe itself so maybe there's some connection between the masses of all particles that were or ever will be

and this initial phase of the universe called the inflation. Something we haven't figured out yet because all the masses look pretty random. Yeah, we have no fundamental theory of the masses of particles in the universe. Yeah, exactly. That's a great question. All right, Eric Venus. And he says, yes.

Like the planet and the goddess. He says, I understand that as we look further into the universe, we're looking further back in time. What have we learned so far about the early universe that we can expect to impact life on Earth in the near future? So is there anything looking back that we can use looking forward?

I like that. There's a lot of mysteries that we still don't know about. We don't know how the very first galaxies formed out of nothingness that was left over from the CMB. We don't know exactly how they went through this transition. It's called the Cosmic Dark Ages.

So just as we learn about history, we learn about the actual medieval dark ages that impact decisions that we can make as a society. So too, I think we're learning about how the early universe evolved, the types of physics that were in play. And yes, if there is, as some hinting...

There are some hints that actually some of the bulk properties of the universe, most particularly dark energy, is evolving. We need to know that. We need to know, was it different in the past? Was dark energy a different value than it has today? If you thought it was constant for the whole universe,

And we now might be true that it has changed in the past. It could change in the future. Exactly. And that could involve the properties of the space-time itself, which are called vacuum energy of the universe itself. And that could lead to, again...

you know a different scenario for the end of the universe everyone's always talked about the beginning of the years the big rip the big crunch we don't know what would happen but you know as i said keep paying your taxes because it could be another trillion years before we find the end

And I had another fast bit to that it's not as dramatic as your answer but i came of age when we had catalogs of peculiar galaxies and they were called peculiar we didn't know what the hell they were only in the era of computing were we able to simulate what must have happened to ordinary galaxies.

to make them live like that, because they're colliding with each other. Train wrecks. And so once we learned that that had happened in the past, to create this catalog of peculiar galaxies, we now say, wait a minute, wait a minute, we're... we're headed towards Andromeda. We're going to be one of these simulations that somebody else says, Right. Some future graduates. A future. A future. Say, hey, look at those two galaxies over there. Isn't that beautiful? Wow. Look.

They didn't always look like a sombrero. Why are there so many Kardashians in them? And no drama. One more. Last one. Matt Newcomb says this. Hello, Dr. Tyson, Dr. Keating, Lord Nice. My name is Matt Newcomb, like Duke Newcomb. And I'm from San Diego, California. San Diego, that's your hometown. I'm in your current hometown. I'm curious about Simon's observatory ability to detect new particles. How do you know what to look for and how does it collect that data? Cheers from Othello.

science educator. Can you discover things you're not looking for? That's a side light to that question. Can you predict serendipity? So the CMB itself was discovered accidentally. They weren't looking for this glow of the Big Bang. It's aftermath. So it's actually great. What I love about the Simons Observatory is that there are things where

swinging for the fences on. We don't know if inflation took place. If we see it, it could be the same hullabaloo as happened with Bison 2. For our international audience, when you swing for the fences, it's a baseball reference, and it means you're swinging for a very deep home run. And so you might strike out. Yeah. And when you swing that way, you might strike out. But if you connect all the way.

So yeah, for international listeners, think a cricket century. So we're going for the cricket century, if you like. But there's things that are guaranteed to happen. They're guaranteed to know about. And that's the only particle of dark matter. Do you know that we've detected dark matter?

There's dark matter detection. It's called the neutrino. Neutrino has every property of dark matter. It just doesn't make up enough to so-called, you know, make the universe flat and so forth. But we've detected dark matter. However, embarrassingly enough, shamefully enough for physicists with our 17 elementary particles.

We don't know the mass of three of those 17. We know the mass exquisitely accurately for the other 14. The Higgs boson, the electron, etc. What don't we know? We don't know the mass of the three types of neutrinos, the three neutrino flavors. we have a lower bound and we have an upper bound we don't have a measurement

It's like someone looking at Chuck and saying, oh, you're somewhere between one inch tall and a thousand feet tall. It's true, but not useful. It's not true, but not useful. That's a beautiful way to phrase it.

Because we can take these early images of dark matter and the composition of the universe that is affected by them, we can effectively weigh the neutrino by getting enough of them together. They're very light. They're a million times less massive than the electron, at least. They could be even less.

we can for sure constrain their properties, weigh them, if you will, but only by collecting them on the universe's most grand scales. Literally, to weigh enough of them, you need to measure a huge fraction of the universe's volume. And that's what we're going to do. So we're guaranteed to make an imprint on that and detect... not new particles perhaps but uh we could possibly detect new particles we just don't know if they're out there and that's why serendipity is so hard to predict

Wow. That sounded like one of Yogi Berra's predictions. It's hard to make predictions, especially about the future. When you come to a fork in the road, take it. This conversation about the beginnings of things, reminds me just of how interesting that question is. We can spend all our lives studying what is, what already exists, what will become of what already exists. what makes that scientifically accessible is that you can find some other object

that's like it and do a different experiment on that to check for what properties it has, check for how it will respond to whatever you do to it, to see what it becomes in the future. We can do all of this. That's what most of science is. But there's a subset of scientists that are not content with knowing what something is or what it will be. They want to know where it came from. What are its origins?

Sure, we did it for the Earth. There was a day we didn't know where the Earth came from or the sun. But we found other planets. We found other stars. We see them being born, and our star looks like that. We say, that's probably how our star was born. How about the galaxy? Well, we've got JWST helping us there. How do galaxies form?

There's a point in the early universe where all that would have happened. We got top people working on that. But you keep doing this and you reach a point where, well, how did the universe Is there another universe to compare it with? No. Is there some... No We say, well, maybe there's a multiverse. That would account for a beginning of our universe. But then, all that does is push the origins question. Back one more notch. in the past.

Fine you can tell me how this universe got here now. Tell me how the multiverse And whatever made that, tell me how that got it. That's what makes questions of origins so challenging and so fulfilling when you finally arrive at those answers. And that's a cosmic perspective. This has been a Cosmic Queries CMB edition. That's what it is. That's what it was, that's what it is, and that's what it will be.

Brian, thanks for coming. And we can find you online where? BrianKating.com slash StarTalk. I've got some special giveaways from your listeners as well. Whoa! What? Not Mars meteorites, but other types of meteorites. What? He's the only guest that comes here and leaves swag. That's amazing. I love what you guys do. Seriously, I love what you guys do. You do the most important thing, which is to... teach the audience, teach the public how important science is. Yeah, yeah.

And also your book that you... Losing the Nobel Prize. Losing the Nobel Prize. Into the Impossible, Think Like a Nobel Prize Winner. And then in the fall, coming out on my birthday, September 9th, is Focus Like a Nobel Prize Winner. It's a self-help guide. For STEM nerds like me and Neil and maybe like you. Sounds like the publisher's milking that subtitle there. Go through life like a Nobel Prize. Drive like a Nobel Prize. Cook breakfast.

You need to come up with one that says lay on the couch and watch TV I guarantee you that. All right. Chuck, Brian, always good. Always a pleasure. Until next time, this has been StarTalk Cosmic Queries Edition. As always, I bid you... Keep looking out.

This transcript was generated by Metacast using AI and may contain inaccuracies. Learn more about transcripts.
For the best experience, listen in Metacast app for iOS or Android
Open in Metacast