#0009: MLOps en AWS - podcast episode cover

#0009: MLOps en AWS

Jun 16, 202139 min
--:--
--:--
Download Metacast podcast app
Listen to this episode in Metacast mobile app
Don't just listen to podcasts. Learn from them with transcripts, summaries, and chapters for every episode. Skim, search, and bookmark insights. Learn more

Episode description

Tenemos la visita de Guillermo Menendez, Solutions Architect del área de Energía y nos viene a contar sobre los procesos de MLOps para machine learning e inteligencia artificial.

Guillermo Menendez - @_gmcorral_
Guillermo Menendez Corral es un solutions architect en Amazon Web Services dedicado al área de Energía. Tiene mas de 15 años de experiencia diseñando y construyendo aplicativos y actualmente ayuda a grandes clientes en sus arquitecturas de cloud, con un foco en Analytics y Machine Learning.

Rodrigo Asensio - @rasensio
Basado en Barcelona, España, Rodrigo es responsable de un equipo de Solution Architecture del segmento Enterprise que ayuda a grandes clientes en sus migraciones masivas al cloud, en transformación digital y proyectos de innovación.

Links
SageMaker para preparar , crear entrenar y desplegar modelos de ML https://aws.amazon.com/sagemaker/
SageMaker Feature Store para almacenar features de nuestro dataset https://aws.amazon.com/sagemaker/feature-store/
SageMaker Autopilot para construir y entrenar modelos automaticamente https://aws.amazon.com/sagemaker/autopilot/
SageMaker Studio el IDE para ML https://aws.amazon.com/sagemaker/studio/
SageMaker Model Monitor para monitorizar modelos de ML en producción https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html
SageMaker Pipelines CI/CD para Machine Learning https://aws.amazon.com/sagemaker/pipelines/
AWS Step Functions para orquestación de CI/CD de ML https://aws.amazon.com/step-functions/
Managed Apache Airflow para orquestación de CI/CD de ML https://aws.amazon.com/managed-workflows-for-apache-airflow/
SageMaker Ground Truth preparacion y etiquetado de datos https://aws.amazon.com/sagemaker/groundtruth/
SageMaker Pre Processing para pre procesamiento de datos https://aws.amazon.com/blogs/aws/amazon-sagemaker-processing-fully-managed-data-processing-and-model-evaluation/
SageMaker Debugger para poder visualizar detalles del entrenamiento del modelo https://aws.amazon.com/sagemaker/debugger/
SageMaker Experiments para grabar y categorizar experimentos https://aws.amazon.com/blogs/aws/amazon-sagemaker-experiments-organize-track-and-compare-your-machine-learning-trainings/
Managed Spot Training para abaratar costes https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html
For the best experience, listen in Metacast app for iOS or Android
Open in Metacast
#0009: MLOps en AWS | Innovando con AWS podcast - Listen or read transcript on Metacast