Data Engineering Podcast - podcast cover

Data Engineering Podcast

This show goes behind the scenes for the tools, techniques, and difficulties associated with the discipline of data engineering. Databases, workflows, automation, and data manipulation are just some of the topics that you will find here.

Episodes

Achieving Data Reliability: The Role of Data Contracts in Modern Data Management

Summary Data contracts are both an enforcement mechanism for data quality, and a promise to downstream consumers. In this episode Tom Baeyens returns to discuss the purpose and scope of data contracts, emphasizing their importance in achieving reliable analytical data and preventing issues before they arise. He explains how data contracts can be used to enforce guarantees and requirements, and how they fit into the broader context of data observability and quality monitoring. The discussion also...

Jul 28, 202449 minEp. 436

How Generative AI Is Impacting Data Engineering Teams

Summary Generative AI has rapidly gained adoption for numerous use cases. To support those applications, organizational data platforms need to add new features and data teams have increased responsibility. In this episode Lior Gavish, co-founder of Monte Carlo, discusses the various ways that data teams are evolving to support AI powered features and how they are incorporating AI into their work. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data manageme...

Jul 21, 202455 minEp. 435

The Role of Product Managers in Data-Centric Organizations

Summary In this episode Praveen Gujar, Director of Product at LinkedIn, talks about the intricacies of product management for data and analytical platforms. Praveen shares his journey from Amazon to Twitter and now LinkedIn, highlighting his extensive experience in building data products and platforms, digital advertising, AI, and cloud services. He discusses the evolving role of product managers in data-centric environments, emphasizing the importance of clean, reliable, and compliant data. Pra...

Jul 13, 202453 minEp. 434

Neon: A Serverless And Developer Friendly Postgres

Summary Postgres is one of the most widely respected and liked database engines ever. To make it even easier to use for developers to use, Nikita Shamgunov decided to makee it serverless, so that it can scale from zero to infinity. In this episode he explains the engineering involved to make that possible, as well as the numerous details that he and his team are packing into the Neon service to make it even more attractive for anyone who wants to build on top of Postgres. Announcements Hello and...

Jul 08, 202458 minEp. 433

Improve Data Quality Through Engineering Rigor And Business Engagement With Synq

Summary This episode features an insightful conversation with Petr Janda, the CEO and founder of Synq. Petr shares his journey from being an engineer to founding Synq, emphasizing the importance of treating data systems with the same rigor as engineering systems. He discusses the challenges and solutions in data reliability, including the need for transparency and ownership in data systems. Synq's platform helps data teams manage incidents, understand data dependencies, and ensure data quality b...

Jun 30, 20241 hrEp. 432

Stitching Together Enterprise Analytics With Microsoft Fabric

Summary Data lakehouse architectures have been gaining significant adoption. To accelerate adoption in the enterprise Microsoft has created the Fabric platform, based on their OneLake architecture. In this episode Dipti Borkar shares her experiences working on the product team at Fabric and explains the various use cases for the Fabric service. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Data lakes are notoriously complex. For data engin...

Jun 23, 202453 minEp. 431

Being Data Driven At Stripe With Trino And Iceberg

Summary Stripe is a company that relies on data to power their products and business. To support that functionality they have invested in Trino and Iceberg for their analytical workloads. In this episode Kevin Liu shares some of the interesting features that they have built by combining those technologies, as well as the challenges that they face in supporting the myriad workloads that are thrown at this layer of their data platform. Announcements Hello and welcome to the Data Engineering Podcas...

Jun 16, 202453 minEp. 430

X-Ray Vision For Your Flink Stream Processing With Datorios

Summary Streaming data processing enables new categories of data products and analytics. Unfortunately, reasoning about stream processing engines is complex and lacks sufficient tooling. To address this shortcoming Datorios created an observability platform for Flink that brings visibility to the internals of this popular stream processing system. In this episode Ronen Korman and Stav Elkayam discuss how the increased understanding provided by purpose built observability improves the usefulness ...

Jun 09, 202442 minEp. 429

Practical First Steps In Data Governance For Long Term Success

Summary Modern businesses aspire to be data driven, and technologists enjoy working through the challenge of building data systems to support that goal. Data governance is the binding force between these two parts of the organization. Nicola Askham found her way into data governance by accident, and stayed because of the benefit that she was able to provide by serving as a bridge between the technology and business. In this episode she shares the practical steps to implementing a data governance...

Jun 02, 20241 hr 1 minEp. 428

Data Migration Strategies For Large Scale Systems

Summary Any software system that survives long enough will require some form of migration or evolution. When that system is responsible for the data layer the process becomes more challenging. Sriram Panyam has been involved in several projects that required migration of large volumes of data in high traffic environments. In this episode he shares some of the valuable lessons that he learned about how to make those projects successful. Announcements Hello and welcome to the Data Engineering Podc...

May 27, 20241 hrEp. 427

Zenlytic Is Building You A Better Coworker With AI Agents

Summary The purpose of business intelligence systems is to allow anyone in the business to access and decode data to help them make informed decisions. Unfortunately this often turns into an exercise in frustration for everyone involved due to complex workflows and hard-to-understand dashboards. The team at Zenlytic have leaned on the promise of large language models to build an AI agent that lets you converse with your data. In this episode they share their journey through the fast-moving lands...

May 19, 202454 minEp. 426

Release Management For Data Platform Services And Logic

Summary Building a data platform is a substrantial engineering endeavor. Once it is running, the next challenge is figuring out how to address release management for all of the different component parts. The services and systems need to be kept up to date, but so does the code that controls their behavior. In this episode your host Tobias Macey reflects on his current challenges in this area and some of the factors that contribute to the complexity of the problem. Announcements Hello and welcome...

May 12, 202420 minEp. 425

Barking Up The Wrong GPTree: Building Better AI With A Cognitive Approach

Summary Artificial intelligence has dominated the headlines for several months due to the successes of large language models. This has prompted numerous debates about the possibility of, and timeline for, artificial general intelligence (AGI). Peter Voss has dedicated decades of his life to the pursuit of truly intelligent software through the approach of cognitive AI. In this episode he explains his approach to building AI in a more human-like fashion and the emphasis on learning rather than st...

May 05, 202454 minEp. 424

Build Your Second Brain One Piece At A Time

Summary Generative AI promises to accelerate the productivity of human collaborators. Currently the primary way of working with these tools is through a conversational prompt, which is often cumbersome and unwieldy. In order to simplify the integration of AI capabilities into developer workflows Tsavo Knott helped create Pieces, a powerful collection of tools that complements the tools that developers already use. In this episode he explains the data collection and preparation process, the colle...

Apr 28, 202450 minEp. 423

Making Email Better With AI At Shortwave

Summary Generative AI has rapidly transformed everything in the technology sector. When Andrew Lee started work on Shortwave he was focused on making email more productive. When AI started gaining adoption he realized that he had even more potential for a transformative experience. In this episode he shares the technical challenges that he and his team have overcome in integrating AI into their product, as well as the benefits and features that it provides to their customers. Announcements Hello...

Apr 21, 202454 minEp. 422

Designing A Non-Relational Database Engine

Summary Databases come in a variety of formats for different use cases. The default association with the term "database" is relational engines, but non-relational engines are also used quite widely. In this episode Oren Eini, CEO and creator of RavenDB, explores the nuances of relational vs. non-relational engines, and the strategies for designing a non-relational database. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management This episo...

Apr 14, 20241 hr 16 minEp. 421

Establish A Single Source Of Truth For Your Data Consumers With A Semantic Layer

Summary Maintaining a single source of truth for your data is the biggest challenge in data engineering. Different roles and tasks in the business need their own ways to access and analyze the data in the organization. In order to enable this use case, while maintaining a single point of access, the semantic layer has evolved as a technological solution to the problem. In this episode Artyom Keydunov, creator of Cube, discusses the evolution and applications of the semantic layer as a component ...

Apr 07, 202456 minEp. 420

Adding Anomaly Detection And Observability To Your dbt Projects Is Elementary

Summary Working with data is a complicated process, with numerous chances for something to go wrong. Identifying and accounting for those errors is a critical piece of building trust in the organization that your data is accurate and up to date. While there are numerous products available to provide that visibility, they all have different technologies and workflows that they focus on. To bring observability to dbt projects the team at Elementary embedded themselves into the workflow. In this ep...

Mar 31, 202451 minEp. 419

Ship Smarter Not Harder With Declarative And Collaborative Data Orchestration On Dagster+

Summary A core differentiator of Dagster in the ecosystem of data orchestration is their focus on software defined assets as a means of building declarative workflows. With their launch of Dagster+ as the redesigned commercial companion to the open source project they are investing in that capability with a suite of new features. In this episode Pete Hunt, CEO of Dagster labs, outlines these new capabilities, how they reduce the burden on data teams, and the increased collaboration that they ena...

Mar 24, 202456 minEp. 418

Reconciling The Data In Your Databases With Datafold

Summary A significant portion of data workflows involve storing and processing information in database engines. Validating that the information is stored and processed correctly can be complex and time-consuming, especially when the source and destination speak different dialects of SQL. In this episode Gleb Mezhanskiy, founder and CEO of Datafold, discusses the different error conditions and solutions that you need to know about to ensure the accuracy of your data. Announcements Hello and welco...

Mar 17, 202458 minEp. 417

Version Your Data Lakehouse Like Your Software With Nessie

Summary Data lakehouse architectures are gaining popularity due to the flexibility and cost effectiveness that they offer. The link that bridges the gap between data lake and warehouse capabilities is the catalog. The primary purpose of the catalog is to inform the query engine of what data exists and where, but the Nessie project aims to go beyond that simple utility. In this episode Alex Merced explains how the branching and merging functionality in Nessie allows you to use the same versioning...

Mar 10, 202441 minEp. 416

When And How To Conduct An AI Program

Summary Artificial intelligence technologies promise to revolutionize business and produce new sources of value. In order to make those promises a reality there is a substantial amount of strategy and investment required. Colleen Tartow has worked across all stages of the data lifecycle, and in this episode she shares her hard-earned wisdom about how to conduct an AI program for your organization. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managem...

Mar 03, 202446 minEp. 415

Find Out About The Technology Behind The Latest PFAD In Analytical Database Development

Summary Building a database engine requires a substantial amount of engineering effort and time investment. Over the decades of research and development into building these software systems there are a number of common components that are shared across implementations. When Paul Dix decided to re-write the InfluxDB engine he found the Apache Arrow ecosystem ready and waiting with useful building blocks to accelerate the process. In this episode he explains how he used the combination of Apache A...

Feb 25, 202456 minEp. 414

Using Trino And Iceberg As The Foundation Of Your Data Lakehouse

Summary A data lakehouse is intended to combine the benefits of data lakes (cost effective, scalable storage and compute) and data warehouses (user friendly SQL interface). Multiple open source projects and vendors have been working together to make this vision a reality. In this episode Dain Sundstrom, CTO of Starburst, explains how the combination of the Trino query engine and the Iceberg table format offer the ease of use and execution speed of data warehouses with the infinite storage and sc...

Feb 18, 202459 minEp. 413

Data Sharing Across Business And Platform Boundaries

Summary Sharing data is a simple concept, but complicated to implement well. There are numerous business rules and regulatory concerns that need to be applied. There are also numerous technical considerations to be made, particularly if the producer and consumer of the data aren't using the same platforms. In this episode Andrew Jefferson explains the complexities of building a robust system for data sharing, the techno-social considerations, and how the Bobsled platform that he is building ...

Feb 11, 20241 hrEp. 412

Tackling Real Time Streaming Data With SQL Using RisingWave

Summary Stream processing systems have long been built with a code-first design, adding SQL as a layer on top of the existing framework. RisingWave is a database engine that was created specifically for stream processing, with S3 as the storage layer. In this episode Yingjun Wu explains how it is architected to power analytical workflows on continuous data flows, and the challenges of making it responsive and scalable. Announcements Hello and welcome to the Data Engineering Podcast, the show abo...

Feb 04, 202457 minEp. 411

Build A Data Lake For Your Security Logs With Scanner

Summary Monitoring and auditing IT systems for security events requires the ability to quickly analyze massive volumes of unstructured log data. The majority of products that are available either require too much effort to structure the logs, or aren't fast enough for interactive use cases. Cliff Crosland co-founded Scanner to provide fast querying of high scale log data for security auditing. In this episode he shares the story of how it got started, how it works, and how you can get starte...

Jan 29, 20241 hr 3 minEp. 410

Modern Customer Data Platform Principles

Summary Databases and analytics architectures have gone through several generational shifts. A substantial amount of the data that is being managed in these systems is related to customers and their interactions with an organization. In this episode Tasso Argyros, CEO of ActionIQ, gives a summary of the major epochs in database technologies and how he is applying the capabilities of cloud data warehouses to the challenge of building more comprehensive experiences for end-users through a modern c...

Jan 22, 20241 hr 2 minEp. 409

Pushing The Limits Of Scalability And User Experience For Data Processing WIth Jignesh Patel

Summary Data processing technologies have dramatically improved in their sophistication and raw throughput. Unfortunately, the volumes of data that are being generated continue to double, requiring further advancements in the platform capabilities to keep up. As the sophistication increases, so does the complexity, leading to challenges for user experience. Jignesh Patel has been researching these areas for several years in his work as a professor at Carnegie Mellon University. In this episode h...

Jan 07, 202450 minEp. 408

Designing Data Platforms For Fintech Companies

Summary Working with financial data requires a high degree of rigor due to the numerous regulations and the risks involved in security breaches. In this episode Andrey Korchack, CTO of fintech startup Monite, discusses the complexities of designing and implementing a data platform in that sector. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Data lakes are notoriously complex. For data engineers who battle to build and scale high quality d...

Jan 01, 202448 minEp. 407
For the best experience, listen in Metacast app for iOS or Android
Open in Metacast