Summary The database market continues to expand, offering systems that are suited to virtually every use case. But what happens if you need something customized to your application? FoundationDB is a distributed key-value store that provides the primitives that you need to build a custom database platform. In this episode Ryan Worl explains how it is architected, how to use it for your applications, and provides examples of system design patterns that can be built on top of it. If you need a fou...
May 07, 2019•1 hr 6 min•Ep. 80
Summary Kubernetes is a driving force in the renaissance around deploying and running applications. However, managing the database layer is still a separate concern. The KubeDB project was created as a way of providing a simple mechanism for running your storage system in the same platform as your application. In this episode Tamal Saha explains how the KubeDB project got started, why you might want to run your database with Kubernetes, and how to get started. He also covers some of the challeng...
Apr 29, 2019•51 min•Ep. 79
Summary One of the biggest challenges for any business trying to grow and reach customers globally is how to scale their data storage. FaunaDB is a cloud native database built by the engineers behind Twitter’s infrastructure and designed to serve the needs of modern systems. Evan Weaver is the co-founder and CEO of Fauna and in this episode he explains the unique capabilities of Fauna, compares the consensus and transaction algorithm to that used in other NewSQL systems, and describes the ways t...
Apr 22, 2019•54 min•Ep. 78
Summary Database indexes are critical to ensure fast lookups of your data, but they are inherently tied to the database engine. Pilosa is rewriting that equation by providing a flexible, scalable, performant engine for building an index of your data to enable high-speed aggregate analysis. In this episode Seebs explains how Pilosa fits in the broader data landscape, how it is architected, and how you can start using it for your own analysis. This was an interesting exploration of a different way...
Apr 15, 2019•44 min•Ep. 77
Summary How much time do you spend maintaining your data pipeline? How much end user value does that provide? Raghu Murthy founded DataCoral as a way to abstract the low level details of ETL so that you can focus on the actual problem that you are trying to solve. In this episode he explains his motivation for building the DataCoral platform, how it is leveraging serverless computing, the challenges of delivering software as a service to customer environments, and the architecture that he has de...
Apr 08, 2019•54 min•Ep. 76
Summary Analytics projects fail all the time, resulting in lost opportunities and wasted resources. There are a number of factors that contribute to that failure and not all of them are under our control. However, many of them are and as data engineers we can help to keep our projects on the path to success. Eugene Khazin is the CEO of PrimeTSR where he is tasked with rescuing floundering analytics efforts and ensuring that they provide value to the business. In this episode he reflects on the w...
Apr 01, 2019•37 min•Ep. 75
Summary Data integration is one of the most challenging aspects of any data platform, especially as the variety of data sources and formats grow. Enterprise organizations feel this acutely due to the silos that occur naturally across business units. The CluedIn team experienced this issue first-hand in their previous roles, leading them to build a business aimed at building a managed data fabric for the enterprise. In this episode Tim Ward, CEO of CluedIn, joins me to explain how their platform ...
Mar 25, 2019•58 min•Ep. 74
Summary Delivering a data analytics project on time and with accurate information is critical to the success of any business. DataOps is a set of practices to increase the probability of success by creating value early and often, and using feedback loops to keep your project on course. In this episode Chris Bergh, head chef of Data Kitchen, explains how DataOps differs from DevOps, how the industry has begun adopting DataOps, and how to adopt an agile approach to building your data platform. Ann...
Mar 18, 2019•55 min•Ep. 73
Summary Customer analytics is a problem domain that has given rise to its own industry. In order to gain a full understanding of what your users are doing and how best to serve them you may need to send data to multiple services, each with their own tracking code or APIs. To simplify this process and allow your non-engineering employees to gain access to the information they need to do their jobs Segment provides a single interface for capturing data and routing it to all of the places that you ...
Mar 04, 2019•48 min•Ep. 72
Summary Deep learning is the latest class of technology that is gaining widespread interest. As data engineers we are responsible for building and managing the platforms that power these models. To help us understand what is involved, we are joined this week by Thomas Henson. In this episode he shares his experiences experimenting with deep learning, what data engineers need to know about the infrastructure and data requirements to power the models that your team is building, and how it can be u...
Feb 25, 2019•43 min•Ep. 71
Summary Distributed storage systems are the foundational layer of any big data stack. There are a variety of implementations which support different specialized use cases and come with associated tradeoffs. Alluxio is a distributed virtual filesystem which integrates with multiple persistent storage systems to provide a scalable, in-memory storage layer for scaling computational workloads independent of the size of your data. In this episode Bin Fan explains how he got involved with the project,...
Feb 19, 2019•1 hr•Ep. 70
Summary Machine learning is a class of technologies that promise to revolutionize business. Unfortunately, it can be difficult to identify and execute on ways that it can be used in large companies. Kevin Dewalt founded Prolego to help Fortune 500 companies build, launch, and maintain their first machine learning projects so that they can remain competitive in our landscape of constant change. In this episode he discusses why machine learning projects require a new set of capabilities, how to bu...
Feb 11, 2019•48 min•Ep. 69
Summary Archaeologists collect and create a variety of data as part of their research and exploration. Open Context is a platform for cleaning, curating, and sharing this data. In this episode Eric Kansa describes how they process, clean, and normalize the data that they host, the challenges that they face with scaling ETL processes which require domain specific knowledge, and how the information contained in connections that they expose is being used for interesting projects. Introduction Hello...
Feb 04, 2019•1 hr 1 min•Ep. 68
Summary Controlling access to a database is a solved problem… right? It can be straightforward for small teams and a small number of storage engines, but once either or both of those start to scale then things quickly become complex and difficult to manage. After years of running across the same issues in numerous companies and even more projects Justin McCarthy built strongDM to solve database access management for everyone. In this episode he explains how the strongDM proxy works to grant and ...
Jan 29, 2019•42 min•Ep. 67
Summary Building internal expertise around big data in a large organization is a major competitive advantage. However, it can be a difficult process due to compliance needs and the need to scale globally on day one. In this episode Jesper Søgaard and Keld Antonsen share the story of starting and growing the big data group at LEGO. They discuss the challenges of being at global scale from the start, hiring and training talented engineers, prototyping and deploying new systems in the cloud, and wh...
Jan 21, 2019•48 min•Ep. 66
Summary The past year has been an active one for the timeseries market. New products have been launched, more businesses have moved to streaming analytics, and the team at Timescale has been keeping busy. In this episode the TimescaleDB CEO Ajay Kulkarni and CTO Michael Freedman stop by to talk about their 1.0 release, how the use cases for timeseries data have proliferated, and how they are continuing to simplify the task of processing your time oriented events. Introduction Hello and welcome t...
Jan 14, 2019•41 min•Ep. 65
Summary The Hadoop platform is purpose built for processing large, slow moving data in long-running batch jobs. As the ecosystem around it has grown, so has the need for fast data analytics on fast moving data. To fill this need the Kudu project was created with a column oriented table format that was tuned for high volumes of writes and rapid query execution across those tables. For a perfect pairing, they made it easy to connect to the Impala SQL engine. In this episode Brock Noland and Jordan...
Jan 07, 2019•51 min•Ep. 64
Summary As more companies and organizations are working to gain a real-time view of their business, they are increasingly turning to stream processing technologies to fullfill that need. However, the storage requirements for continuous, unbounded streams of data are markedly different than that of batch oriented workloads. To address this shortcoming the team at Dell EMC has created the open source Pravega project. In this episode Tom Kaitchuk explains how Pravega simplifies storage and processi...
Dec 31, 2018•45 min•Ep. 63
Summary Processing high velocity time-series data in real-time is a complex challenge. The team at PipelineDB has built a continuous query engine that simplifies the task of computing aggregates across incoming streams of events. In this episode Derek Nelson and Usman Masood explain how it is architected, strategies for designing your data flows, how to scale it up and out, and edge cases to be aware of. Preamble Hello and welcome to the Data Engineering Podcast, the show about modern data manag...
Dec 24, 2018•1 hr 4 min•Ep. 62
Summary Every business needs a pipeline for their critical data, even if it is just pasting into a spreadsheet. As the organization grows and gains more customers, the requirements for that pipeline will change. In this episode Christian Heinzmann, Head of Data Warehousing at Grubhub, discusses the various requirements for data pipelines and how the overall system architecture evolves as more data is being processed. He also covers the changes in how the output of the pipelines are used, how tha...
Dec 17, 2018•39 min•Ep. 61
Summary Apache Spark is a popular and widely used tool for a variety of data oriented projects. With the large array of capabilities, and the complexity of the underlying system, it can be difficult to understand how to get started using it. Jean George Perrin has been so impressed by the versatility of Spark that he is writing a book for data engineers to hit the ground running. In this episode he helps to make sense of what Spark is, how it works, and the various ways that you can use it. He a...
Dec 10, 2018•51 min•Ep. 60
Summary Distributed systems are complex to build and operate, and there are certain primitives that are common to a majority of them. Rather then re-implement the same capabilities every time, many projects build on top of Apache Zookeeper. In this episode Patrick Hunt explains how the Apache Zookeeper project was started, how it functions, and how it is used as a building block for other distributed systems. He also explains the operational considerations for running your own cluster, how it co...
Dec 03, 2018•54 min•Ep. 59
Summary When your data lives in multiple locations, belonging to at least as many applications, it is exceedingly difficult to ask complex questions of it. The default way to manage this situation is by crafting pipelines that will extract the data from source systems and load it into a data lake or data warehouse. In order to make this situation more manageable and allow everyone in the business to gain value from the data the folks at Dremio built a self service data platform. In this episode ...
Nov 26, 2018•39 min•Ep. 58
Summary Modern applications and data platforms aspire to process events and data in real time at scale and with low latency. Apache Flink is a true stream processing engine with an impressive set of capabilities for stateful computation at scale. In this episode Fabian Hueske, one of the original authors, explains how Flink is architected, how it is being used to power some of the world’s largest businesses, where it sits in the lanscape of stream processing tools, and how you can start using it...
Nov 19, 2018•48 min•Ep. 57
Summary A data lake can be a highly valuable resource, as long as it is well built and well managed. Unfortunately, that can be a complex and time-consuming effort, requiring specialized knowledge and diverting resources from your primary business. In this episode Yoni Iny, CTO of Upsolver, discusses the various components that are necessary for a successful data lake project, how the Upsolver platform is architected, and how modern data lakes can benefit your organization. Preamble Hello and we...
Nov 11, 2018•52 min•Ep. 56
Summary Business intelligence is a necessity for any organization that wants to be able to make informed decisions based on the data that they collect. Unfortunately, it is common for different portions of the business to build their reports with different assumptions, leading to conflicting views and poor choices. Looker is a modern tool for building and sharing reports that makes it easy to get everyone on the same page. In this episode Daniel Mintz explains how the product is architected, the...
Nov 05, 2018•58 min•Ep. 55
Summary Jupyter notebooks have gained popularity among data scientists as an easy way to do exploratory analysis and build interactive reports. However, this can cause difficulties when trying to move the work of the data scientist into a more standard production environment, due to the translation efforts that are necessary. At Netflix they had the crazy idea that perhaps that last step isn’t necessary, and the production workflows can just run the notebooks directly. Matthew Seal is one of the...
Oct 29, 2018•41 min•Ep. 54
Summary As data science becomes more widespread and has a bigger impact on the lives of people, it is important that those projects and products are built with a conscious consideration of ethics. Keeping ethical principles in mind throughout the lifecycle of a data project helps to reduce the overall effort of preventing negative outcomes from the use of the final product. Emily Miller and Peter Bull of Driven Data have created Deon to improve the communication and conversation around ethics am...
Oct 22, 2018•46 min•Ep. 53
Summary With the growth of the Hadoop ecosystem came a proliferation of implementations for the Hive table format. Unfortunately, with no formal specification, each project works slightly different which increases the difficulty of integration across systems. The Hive format is also built with the assumptions of a local filesystem which results in painful edge cases when leveraging cloud object storage for a data lake. In this episode Ryan Blue explains how his work on the Iceberg table format s...
Oct 15, 2018•54 min•Ep. 52
Summary One of the most complex aspects of managing data for analytical workloads is moving it from a transactional database into the data warehouse. What if you didn’t have to do that at all? MemSQL is a distributed database built to support concurrent use by transactional, application oriented, and analytical, high volume, workloads on the same hardware. In this episode the CEO of MemSQL describes how the company and database got started, how it is architected for scale and speed, and how it i...
Oct 09, 2018•57 min•Ep. 51